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The propagation of two-dimensional Bessel soliton clusters in strongly nonlocal media is investigated analytically. A broad 
class of exact self-similar solutions to the strongly nonlocal Schrödinger equation has been obtained. We find a Bessel 
solitary wave solution by using self-similar method. The modulation of the intensity distributions of optical beam under 
different parameters is discussed in detail. 
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1. Introduction 
 

Study of solitary wave in nonlocal media has been the 

subject of much interest in theory and experiment in these 

years [1-8]. Nonlocality has also been a phenomenon of 

intense research over recent years in various nonlinear 

physical systems [9,10]. Such as nonlocal nonlinear 

response can suppress modulation instability, prevent the 

collapse of self-focusing beams [11], support fundamental 

and vortex solitons [12-16], solitions of Bose–Einstein 

condensates [17,18], as well as can describe a noncontact 

bosonic interaction [19]. In nonlinear media, strongly 

nonlocality means that the characteristic length of the 

response function is much broader than the width of the 

optical beam. The phenomena of strongly nonlocality have 

been found in some experiments in nonlinear media 

[20,21]. It has been demonstrated that the nonlocality of 

nonlinear media can be described by a general nonlocal 

nonlinear Schrödinger equation (NNLSE). Many methods 

have been applied to solve similar nonlinear problems [22-

25]. Snyder et al simplified the NNLSE and proposed a 

nonlocal linear model to describe the propagation of 

optical beam in the strongly nonlocal case [5]. 

Subsequently, some generalized nonlocal models have 

been proposed and a series of solutions, such as Hermit-

Gauss, Laguerre-Gauss, necklace solitons, have been 

obtained in different dimensional coordinates [3,26,27]. 

The interest in properties of self-similar waves in 

complex nonlinear optical systems has grown greatly 

during recent years. Self-similar solutions have been 

explored not only in some areas such as plasma physics 

and nuclear physics, e.g., the light propagation in cold 

atom gases [28-30], but also in nonlinear optics 

community [3,31,32]. Studies of self-similar solutions of 

nonlinear differential equations have been of great value in 

understanding widely different nonlinear physical 

phenomena. As an example, exact self-similar solutions in 

nonlocal Schrödinger equation (NLSE) with distributed 

coefficients and some solutions in strongly nonlocal 

nonlinear media [27,31], were extensively investigated. 

Such self-similar solutions have many features similar to 

the ideal solitons, so it is also called self-similar solitary 

wave. In this paper, we will give an exact analytical Bessel   

type solution for the NLSE in a strongly nonlocal limit. 

We find a variety of self-similar solitary solutions. 

 

 

2. Methods 

The nonlinear Schrödinger equation of two-

dimensional optical beams in a nonlocal media can be 

written as [3,5,31]  
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where ( , , )r z    is a paraxial beam and z  is the axis 

of the light propagation. 
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Laplacian operator and =1/2k . k is the wave number in 

the media and n is the nonlinear perturbation of the 

refraction index. In the case of the strongly nonlocality, 

the Eq.(1) can be normalized in a dimensionless form as 

[3,31] 
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s is the normalized unit corresponding to the beam in 

the transverse plane. 
2 2r x y  and x , y are the axises 
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of Cartesian coordinate. By a separation of variables 

( , ) ( )u r z   , Eq.(2) can be separated into two 

functions as follows 
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The parameter number m  is integers and stands for 

the physical quantum number of  . The parameter q

determines the depth of azimuthal modulation. The 

solution of Eq.(3) is cos( ) sin( )m iq m    . To find the 

self-similar solutions of Eq.(4), the complex field can be 

defined as      ,
, ,

iB z r
u r z A r z e and  ,A r z ,  ,B r z  are 

real functions. If we substitute the form of  ,u r z  into 

Eq.(4) , we can get the following equations  
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To find a self-similar solution, a set of self-similar 

transformations are introduced [3,31] 
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where ( )w z is the width of light beam. ( )F  is the self-

similar function and 
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   is the self-similar 

variable. The parameters ( )a z , ( )b z , ( )c z respectively 

stand for the phase offset, the frequency shift and the wave 

front curvature. As pointed in previous work [3,27,31], 

after substituting Eq.(7) and Eq.(8) into Eq.(6), we can get 
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into Eq.(5), we have 
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This equation can be rewritten as follows 
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Here the parameters ' / 2m m , s s n   and n are real 

numbers. The solution of Eq.(10) is a type of Bessel 

function and it’s solution is '( ) ( ).mF J  In order to find 

the solution of Eq.(12), we give a transformation

/dw dz W . According to the Eq.(12), we obtain  
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can get the following equation 
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The solution of Eq.(13) can be easily obtained as  
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Finally, we obtain the exact self-similar soliton solution of 

Eq.(2):  
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3. Results and discussion 

In this paragraph, we will discuss the intensity 

distribution of our analytical solutions. In Fig. 1, a 

comparison of intensity distributions of self-similar 

solitary waves between analytical solutions and numerical 

simulations with different m  is presented. Here the initial 

parameters are chosen as 0 1w  , 1s  , / 3z   and

0q  . The middle figure is our theoretical analysis result 

of Eq. (16). It is clearly seen that the intensities of solitary 

waves have a symmetric distribution. As shown in Fig. 1 
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(a), the intensity distribution of soliton waves at the 

tangent plane of the symmetric axis clearly shows this 

symmetric distribution. This phenomenon comes from the 

additional strongly nonlocal condition [12]. We also get 

the numerical simulation results by using Fourier 

transform method. Numerical solution of Eq. (2) is 

performed to ascertain the stability of soliton clusters and 

to compare with the analytical solution. In order to test the 

stability of soliton wave, we add appropriate white noise 

to the simulation. As expected, no collapse is seen, and 

excellent agreement with the analytical solution is 

obtained. It will be noted that the solution becomes to be a 

usual Bessel type when 0m  , and the solitary wave will 

not be affected by phase modulation. With the increase of 

m , there is a necklace type distribution around the central 

point for the facula points and the number of facular points 

is a double value of m .  

 

 

Fig. 1. Comparison of the analytical solution for intensity with the numerical simulation, for different m , when  0q  . 

(a) The intensity distribution of soliton waves at the tangent plane of the symmetric axis. (b) Analytical solution of equation (16).  

(c)  Numerical simulation of equation (2). 

 

    Fig. 2. Intensity distributions of solitons with different values of q . The parameter 2m  . 
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      Fig. 3. The intensity distributions of the soliton varies with z . The parameters 0q   and 1m  . 

 

 

Fig. 2 shows the intensity distribution of self-similar 

solitary waves with different azimuthal modulation 

parameter q . The necklace will become to be more and 

more obscure with the increase of q  azimuthal modulation 

untill it becomes a Bessel ring at 1q  . Fig. 3 shows the 

variation of soliton wave with transmission distance. 

Obviously, the soliton wave changes periodically with the 

transmission distance. Although the intensity of soliton 

wave varies with the transmission distance, there is no loss 

in the transmission process. 

 

 

4. Conclusions 
 

In summary, the exact solutions of a nonlocal 

Schrödinger equation in the strong nonlocal case have 

been studied. A two-dimensional solution of Bessel 

solitary waves has been obtained. The intensity 

distributions of optical beam have been discussed in detail. 

It is found the solitary waves have a necklace type 

symmetric distribution around the central point and the 

number of facular points is a double value of m . The 

stability of self-similar soliton wave is verified by direct 

numerical simulation. The variation of soliton wave with 

transmission distance and modulation parameters is also 

discussed. 
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